Solving the hard problem of Bertrand's paradox

Journal of Mathematical Physics 55 (8):083503 (2014)
  Copy   BIBTEX

Abstract

Bertrand's paradox is a famous problem of probability theory, pointing to a possible inconsistency in Laplace's principle of insufficient reason. In this article, we show that Bertrand's paradox contains two different problems: an “easy” problem and a “hard” problem. The easy problem can be solved by formulating Bertrand's question in sufficiently precise terms, so allowing for a non-ambiguous modelization of the entity subjected to the randomization. We then show that once the easy problem is settled, also the hard problem becomes solvable, provided Laplace's principle of insufficient reason is applied not to the outcomes of the experiment, but to the different possible “ways of selecting” an interaction between the entity under investigation and that producing the randomization. This consists in evaluating a huge average over all possible “ways of selecting” an interaction, which we call a universal average. Following a strategy similar to that used in the definition of the Wiener measure, we calculate such universal average and therefore solve the hard problem of Bertrand's paradox. The link between Bertrand's problem of probability theory and the measurement problem of quantum mechanics is also briefly discussed.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 100,317

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2022-01-31

Downloads
10 (#1,459,644)

6 months
5 (#1,015,253)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Diederik Aerts
Vrije Universiteit Brussel

References found in this work

No references found.

Add more references