Feature Extraction of Plant Leaf Using Deep Learning

Complexity 2022:1-8 (2022)
  Copy   BIBTEX

Abstract

Half a million species of plants could be existing in the world. Classification of plants based on leaf features is a critical job as feature extraction from binary images of leaves may result in duplicate identification. However, leaves are an effective means of differentiating plant species because of their unique characteristics like area, diameter, perimeter, circularity, aspect ratio, solidity, eccentricity, and narrow factor. This paper presents the extraction of plant leaf gas alongside other features from the camera images or a dataset of images by applying a convolutional neural network. The extraction of leaf gas enables identification of the actual level of chlorophyll and nitrogen which may help to interpret future predictions. Our contribution includes the study of texture and geometric features, analyzing ratio of Ch and N in both healthy and dead leaves, and the study of color-based methods via CNN. Several steps are included to obtain the results: image preprocessing, testing, training, enhancement, segmentation, feature extraction, and aggregation of results. A vital contrast of the results can be seen by considering the kind of image, whether a healthy or dead leaf.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 103,401

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Grape Leaf Species Classification Using CNN.Mohammed M. Almassri & Samy S. Abu-Naser - 2024 - International Journal of Academic Information Systems Research (IJAISR) 8 (4):66-72.
Agricultural Innovation: Automated Detection of Plant Diseases through Deep Learning.S. Yoheswari - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):630-640.
Automated Plant Disease Detection through Deep Learning for Enhanced Agricultural Productivity.M. Sheik Dawood - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):640-650.
Deep Neural Networks for Real-Time Plant Disease Diagnosis and Productivity Optimization.K. Usharani - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):645-652.
Identification of plant Syndrome using IPT.M. Madan Mohan - 2021 - Journal of Science Technology and Research (JSTAR) 2 (1):60-69.
Classification of Apple Diseases Using Deep Learning.Ola I. A. Lafi & Samy S. Abu-Naser - 2024 - International Journal of Academic Information Systems Research (IJAISR) 8 (4):1-9.

Analytics

Added to PP
2022-05-29

Downloads
35 (#678,037)

6 months
4 (#864,415)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references