Abstract
Temporal epistemic logics are known, from results of Halpern and Vardi, to have a wide range of complexities of the satisfiability problem: from PSPACE, through non-elementary, to highly undecidable. These complexities depend on the choice of some key parameters specifying, inter alia, possible interactions between time and knowledge, such as synchrony and agents' abilities for learning and recall. In this work we develop practically implementable tableau-based decision procedures for deciding satisfiability in single-agent synchronous temporal-epistemic logics with interactions between time and knowledge. We discuss some complications that occur, even in the single-agent case, when interactions between time and knowledge are assumed and show how the method of incremental tableaux can be adapted to work in EXPSPACE, respectively 2EXPTIME, for these logics, thereby also matching the upper bounds obtained for them by Halpern and Vardi.