Abstract
The Boolean many-valued approach to vagueness is similar to the infinite-valued approach embraced by fuzzy logic in the respect in which both approaches seek to solve the problems of vagueness by assigning to the relevant sentences many values between falsity and truth, but while the fuzzy-logic approach postulates linearly-ordered values between 0 and 1, the Boolean approach assigns to sentences values in a many-element complete Boolean algebra. On the modal-precisificational approach represented by Kit Fine, if a sentence is indeterminate in truth value in some world, it is taken to be true in one precisified world accessible from that world and false in another. This paper points to a way to unify these two approaches to vagueness by showing that Fine’s version of the modal-precisificational approach can be combined with the Boolean many-valued approach instead of supervaluationism, one of the most popular approaches to vagueness.