Abstract
We show that the consistency of the theory “ZF + DC + Every successor cardinal is regular + Every limit cardinal is singular + Every successor cardinal satisfies the tree property” follows from the consistency of a proper class of supercompact cardinals. This extends earlier results due to the author showing that the consistency of the theory “\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}
ZF+¬ACω\end{document} + Every successor cardinal is regular + Every limit cardinal is singular + Every successor cardinal satisfies the tree property” follows from hypotheses stronger in consistency strength than a supercompact limit of supercompact cardinals. A lower bound in consistency strength is provided by a result of Busche and Schindler, who showed that the consistency of the theory “ZF + Every successor cardinal is regular + Every limit cardinal is singular + Every successor cardinal satisfies the tree property” implies the consistency of ADL(R).