Proof Systems for 3-valued Logics Based on Gödel’s Implication

Logic Journal of the IGPL 30 (3):437-453 (2022)
  Copy   BIBTEX

Abstract

The logic $G3^{<}_{{{}^{\scriptsize{-}}}\!\!\textrm{L}}$ was introduced in Robles and Mendéz as a paraconsistent logic which is based on Gödel’s 3-valued matrix, except that Kleene–Łukasiewicz’s negation is added to the language and is used as the main negation connective. We show that $G3^{<}_{{{}^{\scriptsize{-}}}\!\!\textrm{L}}$ is exactly the intersection of $G3^{\{1\}}_{{{}^{\scriptsize{-}}}\!\!\textrm{L}}$ and $G3^{\{1,0.5\}}_{{{}^{\scriptsize{-}}}\!\!\textrm{L}}$, the two truth-preserving 3-valued logics which are based on the same truth tables. We then construct a Hilbert-type system which has for $\to $ as its sole rule of inference, and is strongly sound and complete for $G3^{<}_{{{}^{\scriptsize{-}}}\!\!\textrm{L}}$. Then we show how, by adding one axiom or one new rule of inference, we get strongly sound and complete systems for $G3^{\{1\}}_{{{}^{\scriptsize{-}}}\!\!\textrm{L}}$ and $G3^{\{1,0.5\}}_{{{}^{\scriptsize{-}}}\!\!\textrm{L}}$. Finally, we provide quasi-canonical Gentzen-type systems which are sound and complete for those logics and show that they are all analytic, by proving the cut-elimination theorem for them.

Other Versions

No versions found

Links

PhilArchive

    This entry is not archived by us. If you are the author and have permission from the publisher, we recommend that you archive it. Many publishers automatically grant permission to authors to archive pre-prints. By uploading a copy of your work, you will enable us to better index it, making it easier to find.

    Upload a copy of this work     Papers currently archived: 105,824

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2021-02-23

Downloads
36 (#699,512)

6 months
6 (#724,702)

Historical graph of downloads
How can I increase my downloads?