Towards Martins minimum

Archive for Mathematical Logic 41 (1):65-82 (2002)
  Copy   BIBTEX

Abstract

We show that it is consistent with MA + ¬CH that the Forcing Axiom fails for all forcing notions in the class of ωω–bounding forcing notions with norms of [17].

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 100,865

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Sacks forcing, Laver forcing, and Martin's axiom.Haim Judah, Arnold W. Miller & Saharon Shelah - 1992 - Archive for Mathematical Logic 31 (3):145-161.
Distributive proper forcing axiom and cardinal invariants.Huiling Zhu - 2013 - Archive for Mathematical Logic 52 (5-6):497-506.
A formalism for some class of forcing notions.Piotr Koszmider & P. Koszmider - 1992 - Mathematical Logic Quarterly 38 (1):413-421.
Proper forcing extensions and Solovay models.Joan Bagaria & Roger Bosch - 2004 - Archive for Mathematical Logic 43 (6):739-750.
Bounded Namba forcing axiom may fail.Jindrich Zapletal - 2018 - Mathematical Logic Quarterly 64 (3):170-172.
Universal forcing notions and ideals.Andrzej Rosłanowski & Saharon Shelah - 2007 - Archive for Mathematical Logic 46 (3-4):179-196.
The Bounded Axiom A Forcing Axiom.Thilo Weinert - 2010 - Mathematical Logic Quarterly 56 (6):659-665.
On extendible cardinals and the GCH.Konstantinos Tsaprounis - 2013 - Archive for Mathematical Logic 52 (5-6):593-602.

Analytics

Added to PP
2013-12-01

Downloads
18 (#1,109,160)

6 months
6 (#851,951)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

Sacks forcing, Laver forcing, and Martin's axiom.Haim Judah, Arnold W. Miller & Saharon Shelah - 1992 - Archive for Mathematical Logic 31 (3):145-161.
Many simple cardinal invariants.Martin Goldstern & Saharon Shelah - 1993 - Archive for Mathematical Logic 32 (3):203-221.
Pointwise compact and stable sets of measurable functions.S. Shelah & D. H. Fremlin - 1993 - Journal of Symbolic Logic 58 (2):435-455.
A model with no magic set.Krzysztof Ciesielski & Saharon Shelah - 1999 - Journal of Symbolic Logic 64 (4):1467-1490.

Add more references