In Dale Jacquette (ed.),
Philosophy of Logic. Malden, Mass.: North Holland. pp. 615--648 (
2002)
Copy
BIBTEX
Abstract
Over the years, Skolem’s Paradox has generated a fairly steady stream of philosophical discussion; nonetheless, the overwhelming consensus among philosophers and logicians is that the paradox doesn’t constitute a mathematical problem (i.e., it doesn’t constitute a real contradiction). Further, there’s general agreement as to why the paradox doesn’t constitute a mathematical problem. By looking at the way firstorder structures interpret quantifiers—and, in particular, by looking at how this interpretation changes as we move from structure to structure—we can give a technically adequate “solution” to Skolem’s Paradox. So, whatever the philosophical upshot of Skolem’s Paradox may be, the mathematical side of Skolem’s Paradox seems to be relatively straightforward.