Abstract
The spacetime manifold, the stage on which physics is played, is constructed ab initio in a formal program that resembles the logicist reconstruction of mathematics. Zermelo’s set theory extended by urelemente serves as a framework, to which physically interpretable proper axioms are added. From this basis, a topology and subsequently a Hausdorff manifold are readily constructed which bear the properties of the known spacetime manifold. The present approach takes worldlines rather than spacetime points to be primitive, having them represented by urelemente. Thereby it is demonstrated that an important part of physics is formally reducible to set theory.