The uniqueness of the fixed-point in every diagonalizable algebra

Studia Logica 35 (4):335 - 343 (1976)
  Copy   BIBTEX

Abstract

It is well known that, in Peano arithmetic, there exists a formula Theor (x) which numerates the set of theorems. By Gödel's and Löb's results, we have that Theor (˹p˺) ≡ p implies p is a theorem ∼Theor (˹p˺) ≡ p implies p is provably equivalent to Theor (˹0 = 1˺). Therefore, the considered "equations" admit, up to provable equivalence, only one solution. In this paper we prove (Corollary 1) that, in general, if P (x) is an arbitrary formula built from Theor (x), then the fixed-point of P (x) (which exists by the diagonalization lemma) is unique up to provable equivalence. This result is settled referring to the concept of diagonalizable algebra (see Introduction)

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 100,676

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2009-01-28

Downloads
55 (#390,253)

6 months
8 (#569,389)

Historical graph of downloads
How can I increase my downloads?

References found in this work

Introduction to mathematical logic.Elliott Mendelson - 1964 - Princeton, N.J.,: Van Nostrand.
Solution of a problem of Leon Henkin.M. H. Löb - 1955 - Journal of Symbolic Logic 20 (2):115-118.
Universal Algebra.George Grätzer - 1982 - Studia Logica 41 (4):430-431.

View all 6 references / Add more references