Some questions of uniformity in algorithmic randomness

Journal of Symbolic Logic 86 (4):1612-1631 (2021)
  Copy   BIBTEX

Abstract

The $\Omega $ numbers—the halting probabilities of universal prefix-free machines—are known to be exactly the Martin-Löf random left-c.e. reals. We show that one cannot uniformly produce, from a Martin-Löf random left-c.e. real $\alpha $, a universal prefix-free machine U whose halting probability is $\alpha $. We also answer a question of Barmpalias and Lewis-Pye by showing that given a left-c.e. real $\alpha $, one cannot uniformly produce a left-c.e. real $\beta $ such that $\alpha - \beta $ is neither left-c.e. nor right-c.e.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 100,774

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Schnorr randomness.Rodney G. Downey & Evan J. Griffiths - 2004 - Journal of Symbolic Logic 69 (2):533-554.
Schnorr Randomness.Rodney G. Downey & Evan J. Griffiths - 2004 - Journal of Symbolic Logic 69 (2):533 - 554.
Randomness and Semimeasures.Laurent Bienvenu, Rupert Hölzl, Christopher P. Porter & Paul Shafer - 2017 - Notre Dame Journal of Formal Logic 58 (3):301-328.
Effective Packing Dimension and Traceability.Rod Downey & Keng Meng Ng - 2010 - Notre Dame Journal of Formal Logic 51 (2):279-290.
A C.E. Real That Cannot Be SW-Computed by Any Ω Number.George Barmpalias & Andrew E. M. Lewis - 2006 - Notre Dame Journal of Formal Logic 47 (2):197-209.

Analytics

Added to PP
2022-04-08

Downloads
13 (#1,332,621)

6 months
4 (#1,246,862)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references