Application of Chaos Theory to Psychological Models

Performance Strategies (1998)
  Copy   BIBTEX

Abstract

This dissertation shows that an alternative theoretical approach from physics--chaos theory--offers a viable basis for improved understanding of human beings and their behavior. Chaos theory provides achievable frameworks for potential identification, assessment, and adjustment of human behavior patterns. ;Most current psychological models fail to address the metaphysical conditions inherent in the human system, thus bringing deep errors to psychological practice and empirical research. Freudian, Jungian and behavioristic perspectives are inadequate psychological models because they assume, either implicitly or explicitly, that the human psychological system is a closed, linear system. On the other hand, Adlerian models that require open systems are likely to be empirically tenable. Logically, models will hold only if the model's assumptions hold. ;The innovative application of chaotic dynamics to psychological behavior is a promising theoretical development because the application asserts that human systems are open, nonlinear and self-organizing. Chaotic dynamics use nonlinear mathematical relationships among factors that influence human systems. This dissertation explores these mathematical relationships in the context of a sample model of moral behavior using simulated data. ;Mathematical equations with nonlinear feedback loops describe chaotic systems. Feedback loops govern the equations' value in subsequent calculation iterations. For example, changes in moral behavior are affected by an individual's own self-centeredness, family and community influences, and previous moral behavior choices that feed back to influence future choices. ;When applying these factors to the chaos equations, the model behaves like other chaotic systems. For example, changes in moral behavior fluctuate in regular patterns, as determined by the values of the individual, family and community factors. In some cases, these fluctuations converge to one value; in other cases, they diverge in still other cases, they oscillate periodically among two or more precise values. ;At certain values, the equations iterate random results, with no convergence, divergence or periodicity: "chaos." At still other values, the equations behave chaotically for many iterations; then a periodic oscillation emerges from the chaos. These emergent patterns provide a significantly better model fit to the dynamic reality of psychological behavior because qualitatively reorganized behavior is logically possible and incorporated in the model's metaphysical assumptions.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,139

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2015-02-02

Downloads
4 (#1,804,354)

6 months
3 (#1,473,720)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references