In Helle Hvid Hansen, Andre Scedrov & Ruy J. G. B. De Queiroz,
Logic, Language, Information, and Computation: 29th International Workshop, WoLLIC 2023, Halifax, NS, Canada, July 11–14, 2023, Proceedings. Springer Nature Switzerland. pp. 101-117 (
2023)
Copy
BIBTEX
Abstract
We discuss two-layered logics formalising reasoning with paraconsistent probabilities that combine the Łukasiewicz [0, 1]-valued logic with Baaz ▵\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}
△\end{document} operator and the Belnap–Dunn logic. The first logic (introduced in [7]) formalises a ‘two-valued’ approach where each event ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}
ϕ\end{document} has independent positive and negative measures that stand for, respectively, the likelihoods of ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}
ϕ\end{document} and ¬ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}
¬ϕ\end{document}. The second logic that we introduce here corresponds to ‘four-valued’ probabilities. There, ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}
ϕ\end{document} is equipped with four measures standing for pure belief, pure disbelief, conflict and uncertainty of an agent in ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}
ϕ\end{document}.We construct faithful embeddings of and into one another and axiomatise using a Hilbert-style calculus. We also establish the decidability of both logics and provide complexity evaluations for them using an expansion of the constraint tableaux calculus for.