Two-Layered Logics for Paraconsistent Probabilities

In Helle Hvid Hansen, Andre Scedrov & Ruy J. G. B. De Queiroz (eds.), Logic, Language, Information, and Computation: 29th International Workshop, WoLLIC 2023, Halifax, NS, Canada, July 11–14, 2023, Proceedings. Springer Nature Switzerland. pp. 101-117 (2023)
  Copy   BIBTEX

Abstract

We discuss two-layered logics formalising reasoning with paraconsistent probabilities that combine the Łukasiewicz [0, 1]-valued logic with Baaz ▵\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\triangle $$\end{document} operator and the Belnap–Dunn logic. The first logic (introduced in [7]) formalises a ‘two-valued’ approach where each event ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} has independent positive and negative measures that stand for, respectively, the likelihoods of ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} and ¬ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lnot \phi $$\end{document}. The second logic that we introduce here corresponds to ‘four-valued’ probabilities. There, ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} is equipped with four measures standing for pure belief, pure disbelief, conflict and uncertainty of an agent in ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document}.We construct faithful embeddings of and into one another and axiomatise using a Hilbert-style calculus. We also establish the decidability of both logics and provide complexity evaluations for them using an expansion of the constraint tableaux calculus for.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 100,497

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Peter Fishburn’s analysis of ambiguity.Mark Shattuck & Carl Wagner - 2016 - Theory and Decision 81 (2):153-165.
Two-cardinal diamond and games of uncountable length.Pierre Matet - 2015 - Archive for Mathematical Logic 54 (3-4):395-412.
Hard Provability Logics.Mojtaba Mojtahedi - 2021 - In Mojtaba Mojtahedi, Shahid Rahman & MohammadSaleh Zarepour (eds.), Mathematics, Logic, and their Philosophies: Essays in Honour of Mohammad Ardeshir. Springer. pp. 253-312.
Minimal elementary end extensions.James H. Schmerl - 2017 - Archive for Mathematical Logic 56 (5-6):541-553.

Analytics

Added to PP
2023-08-31

Downloads
25 (#867,763)

6 months
2 (#1,692,400)

Historical graph of downloads
How can I increase my downloads?

Author Profiles

Sabine Frittella
Université d'Aix-Marseille III
Ondrej Majer
Charles University, Prague

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references