Abstract
A first-order structure $\mathfrak {A}$ is called monadically stable iff every expansion of $\mathfrak {A}$ by unary predicates is stable. In this paper we give a classification of the class $\mathcal {M}$ of $\omega $ -categorical monadically stable structure in terms of their automorphism groups. We prove in turn that $\mathcal {M}$ is the smallest class of structures which contains the one-element pure set, is closed under isomorphisms, and is closed under taking finite disjoint unions, infinite copies, and finite index first-order reducts. Using our classification we show that every structure in $\mathcal {M}$ is first-order interdefinable with a finitely bounded homogeneous structure. We also prove that every structure in $\mathcal {M}$ has finitely many reducts up to interdefinability, thereby confirming Thomas’ conjecture for the class $\mathcal {M}$.