Mathematical Spaces And Kantian Space As Forms Of “de Pure Intuition” / Espaces Mathematiques Et L’espace Kantien En Tant Que Forme De L’intuition Pure [intuition De La “connexion”

Studia Philosophica 1 (2004)
  Copy   BIBTEX

Abstract

Kant has proposed that: space is a “form of intuition” for objects in experience. Kant’s point is that it is impossible for us to have any experience of objects that are not represented in a tri-dimensional space. Under the intuition of connection we have constructed in this text a topological argument for Kant’s claim.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 100,865

External links

  • This entry has no external links. Add one.
Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

The Infinite Given Magnitude and Other Myths About Space and Time.Paul Guyer - 2018 - In Igor Agostini, Richard T. W. Arthur, Geoffrey Gorham, Paul Guyer, Mogens Lærke, Yitzhak Y. Melamed, Ohad Nachtomy, Sanja Särman, Anat Schechtman, Noa Shein & Reed Winegar (eds.), Infinity in Early Modern Philosophy. Cham: Springer Verlag. pp. 181-204.
Kant y el problema de la geometría.José Manuel Osorio - 2014 - Estudios de Filosofía (Universidad de Antioquia) 12:56-72.
Kant y el problema de la geometría.José Manuel Osorio - 2014 - Estudios de Filosofía (Universidad de Antioquia) 12:56-72.
Kant's "argument from geometry".Lisa Shabel - 2004 - Journal of the History of Philosophy 42 (2):195-215.
Reflections On Kant’s Concept Of Space.Lisa Shabel - 2003 - Studies in History and Philosophy of Science Part A 34 (1):45-57.

Analytics

Added to PP
2017-02-20

Downloads
0

6 months
0

Historical graph of downloads

Sorry, there are not enough data points to plot this chart.
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references