An analysis of mean life and lifetime of unstable elementary particles

Foundations of Physics 25 (6):833-849 (1995)
  Copy   BIBTEX

Abstract

A theoretical analysis of the concept of lifetime and mean life of unstable elementary particles is presented. New analytic formulas for lifetime and mean life as a function of decay width Γ and the mass of unstable particle are derived for Breit-Wigner and Matthews-Salam energy distributions. It is demonstrated that, for unstable particles with a larger width or decay energy threshold, the deviation from the generally accepted mean life τ m =Γ −1 is significant. The behavior of the decay law P(t) for small times is analyzed, and it is shown that the Breit-Wigner distribution violates the condition P(t = 0) = 0, whereas the Matthews-Salam distribution satisfies it

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,297

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2013-11-22

Downloads
96 (#220,581)

6 months
7 (#728,225)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references