Dirichlet problem with Lp-boundary data in contractible domains of Carnot groups

Annali della Scuola Normale Superiore di Pisa- Classe di Scienze 5 (4):579-610 (2006)
  Copy   BIBTEX

Abstract

Let ${\mathcal{L}}$ be a sub-laplacian on a stratified Lie group ${G}$. In this paper we study the Dirichlet problem for ${\mathcal{L}}$ with $L^p$-boundary data, on domains $\Omega $ which are contractible with respect to the natural dilations of ${G}$. One of the main difficulties we face is the presence of non-regular boundary points for the usual Dirichlet problem for ${\mathcal{L}}$. A potential theory approach is followed. The main results are applied to study a suitable notion of Hardy spaces

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,010

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Sharp estimates for the Ornstein-Uhlenbeck operator.Giancarlo Maceri, Stefano Meda & Peter Sjögren - 2004 - Annali della Scuola Normale Superiore di Pisa- Classe di Scienze 3 (3):447-480.
Kolmogorov kernel estimates for the Ornstein-Uhlenbeck operator.Robert Haller-Dintelmann & Julian Wiedl - 2005 - Annali della Scuola Normale Superiore di Pisa- Classe di Scienze 4 (4):729-748.
Laplace type operators: Dirichlet problem.Wojciech Kozłowski - 2007 - Annali della Scuola Normale Superiore di Pisa- Classe di Scienze 6 (1):53-80.
Singularities of Maxwell's system in non-Hilbertian Sobolev spaces.Wided Chikouche & Serge Nicaise - 2008 - Annali della Scuola Normale Superiore di Pisa- Classe di Scienze 7 (3):455-482.
Boundary trace of positive solutions of nonlinear elliptic inequalities.Moshe Marcus & Laurent Véron - 2004 - Annali della Scuola Normale Superiore di Pisa- Classe di Scienze 3 (3):481-533.
A fully nonlinear problem with free boundary in the plane.Daniela De Silva & Enrico Valdinoci - 2010 - Annali della Scuola Normale Superiore di Pisa- Classe di Scienze 9 (1):111-132.
Remarks on the blow-up for the Schrödinger equation with critical mass on a plane domain.Valeria Banica - 2004 - Annali della Scuola Normale Superiore di Pisa- Classe di Scienze 3 (1):139-170.

Analytics

Added to PP
2015-04-27

Downloads
11 (#1,418,507)

6 months
4 (#1,247,585)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references