The subformula property of natural deduction derivations and analytic cuts

Logic Journal of the IGPL (forthcoming)
  Copy   BIBTEX

Abstract

In derivations of a sequent system, $\mathcal{L}\mathcal{J}$, and a natural deduction system, $\mathcal{N}\mathcal{J}$, the trails of formulae and the subformula property based on these trails will be defined. The derivations of $\mathcal{N}\mathcal{J}$ and $\mathcal{L}\mathcal{J}$ will be connected by the map $g$, and it will be proved the following: an $\mathcal{N}\mathcal{J}$-derivation is normal $\Longleftrightarrow $ it has the subformula property based on trails $\Longleftrightarrow $ its $g$-image in $\mathcal{L}\mathcal{J}$ is without maximum cuts $\Longrightarrow $ that $g$-image has the subformula property based on trails. In $\mathcal{L}\mathcal{J}$-derivations, another type of cuts, sub-cuts, will be introduced, and it will be proved the following: all cuts of an $\mathcal{L}\mathcal{J}$-derivation are sub-cuts $\Longleftrightarrow $ it has the subformula property based on trails.

Other Versions

No versions found

Links

PhilArchive

    This entry is not archived by us. If you are the author and have permission from the publisher, we recommend that you archive it. Many publishers automatically grant permission to authors to archive pre-prints. By uploading a copy of your work, you will enable us to better index it, making it easier to find.

    Upload a copy of this work     Papers currently archived: 106,169

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Analytics

Added to PP
2020-06-18

Downloads
44 (#563,553)

6 months
10 (#383,177)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Mirjana Borisavljević
University of Belgrade