Three theorems of Godel
Abstract
It might seem that three of Godel’s results - the Completeness and the First and Second Incompleteness Theorems - assume so little that they are reasonably indisputable. A version of the Completeness Theorem, for instance, can be proven in RCA0, which is the weakest system studied extensively in Simpson’s encyclopaedic Subsystems of Second Order Arithmetic. And it often seems that the minimum requirements for a system just to express the Incompleteness Theorems are sufficient to prove them. However, it will be shown that a particular sub-system of Peano Arithmetic is powerful enough to express assertions about syntax, provability, consistency, and models, while being too weak to allow the standard proofs of the theorems to go through. An alternative proof is available for the First Incompleteness Theorem, but is of such a different nature that the import of the theorem changes. And there are no alternative proofs for (certainly) the Completeness and (apparently) the Second Incompleteness Theorems. It is therefore perfectly rational for someone to be skeptical about Godel’s results.