On keeping blue swans and unknowable facts at bay : a case study on Fitch's paradox
Abstract
(T5) ϕ → ◊Kϕ |-- ϕ → Kϕ where ◊ is possibility, and ‘Kϕ’ is to be read as ϕ is known by someone at some time. Let us call the premise the knowability principle and the conclusion near-omniscience.2 Here is a way of formulating Fitch’s proof of (T5). Suppose the knowability principle is true. Then the following instance of it is true: (p & ~Kp) → ◊K(p & ~Kp). But the consequent is false, it is not possible to know p & ~Kp. That is because the supposition that it is known is provably inconsistent.3 The inconsistency requires us to deny the possibility of the supposition, yielding ~◊K(p & ~Kp). This, together with the above instance of the knowability principle, entails ~(p & ~Kp), which is (classically) equivalent to p → Kp. Since p occurs in none of our undischarged assumptions, we may generalize to get near-omniscience, ϕ → Kϕ. QED.