Abstract
Bell's problem of the possibility of a local hidden variable theory of quantum phenomena is considered in the context of the general problem of representing the statistical states of a quantum mechanical system by measures on a classical probability space, and Bell's result is presented as a generalization of Maczynski's theorem for maximal magnitudes. The proof of this generalization is shown to depend on the impossibility of recovering the quantum statistics for sequential probabilities in a classical representation without introducing a randomization process for the hidden variables. Hidden variable theories that exclude such a randomization process are termed “strict,” and it is shown that the class of local hidden variable theories is included in the class of strict theories. A counterargument by Freedman and Wigner is evaluated with reference to Clauser's extension of a hidden variable model proposed by Bell