Abstract
In this moment of rising nationalism worldwide, governments, civil society groups, transnational companies, and web users all complain of increasing regional fragmentation online. While prior work in this area has primarily focused on issues of government censorship and regulatory compliance, we use an inductive and qualitative approach to examine targeted blocking by corporate entities of entire regions motivated by concerns about fraud, abuse, and theft. Through participant-observation at relevant events and intensive interviews with experts, we document the quest by professionals tasked with preserving online security to use new machine-learning based techniques to develop a “fairer” system to determine patterns of “good” and “bad” usage. However, we argue that without understanding the systematic social and political conditions that produce differential behaviors online, these systems may continue to embed unequal treatments, and troublingly may further disguise such discrimination behind more complex and less transparent automated assessment. In order to support this claim, we analyze how current forms of regional blocking incentivize users in blocked regions to behave in ways that are commonly flagged as problematic by dominant security and identification systems. To realize truly global, non-Eurocentric cybersecurity techniques would mean incorporating the ecosystems of service utilization developed by marginalized users rather than reasserting norms of an imagined user that casts aberrations as suspect.