On the parameterized complexity of short computation and factorization

Archive for Mathematical Logic 36 (4-5):321-337 (1997)
  Copy   BIBTEX

Abstract

A completeness theory for parameterized computational complexity has been studied in a series of recent papers, and has been shown to have many applications in diverse problem domains including familiar graph-theoretic problems, VLSI layout, games, computational biology, cryptography, and computational learning [ADF,BDHW,BFH, DEF,DF1-7,FHW,FK]. We here study the parameterized complexity of two kinds of problems: (1) problems concerning parameterized computations of Turing machines, such as determining whether a nondeterministic machine can reach an accept state in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $k$\end{document} steps (the Short TM Computation Problem), and (2) problems concerning derivations and factorizations, such as determining whether a word \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $x$\end{document} can be derived in a grammar \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $G$\end{document} in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $k$\end{document} steps, or whether a permutation has a factorization of length \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $k$\end{document} over a given set of generators. We show hardness and completeness for these problems for various levels of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $W$\end{document} hierarchy. In particular, we show that Short TM Computation is complete for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $W[1]$\end{document}. This gives a new and useful characterization of the most important of the apparently intractable parameterized complexity classes.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 100,809

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Two-cardinal diamond and games of uncountable length.Pierre Matet - 2015 - Archive for Mathematical Logic 54 (3-4):395-412.
Minimal elementary end extensions.James H. Schmerl - 2017 - Archive for Mathematical Logic 56 (5-6):541-553.
Isomorphic and strongly connected components.Miloš S. Kurilić - 2015 - Archive for Mathematical Logic 54 (1-2):35-48.

Analytics

Added to PP
2013-10-30

Downloads
58 (#368,337)

6 months
11 (#338,628)

Historical graph of downloads
How can I increase my downloads?

References found in this work

Unsolvable Problems: A Review.Martin Davis - 1968 - Journal of Symbolic Logic 33 (2):297-298.

Add more references