Abstract
We examined how children's strategy choices in solving complex subtraction problems are related to grade and to variations in problem complexity. In two studies, third- and fifth-grade children (N≈160 each study) solved multi-digit subtraction problems (e.g., 34–18) and described their solution strategies. In the first experiment, strategy selection was investigated by means of a free-choice paradigm, whereas in the second study a discrete-choice approach was implemented. In both experiments, analyses of strategy repertoire indicated that third-grade children were more likely to report less-efficient strategies (i.e., counting) and relied more on the right-to-left solution algorithm compared to fifth-grade children who more often used efficient memory-based retrieval and conceptually-based left-to-right (i.e., decomposition) strategies. Nevertheless, all strategies were reported or selected by both older and younger children and strategy use varied with problem complexity and presentation format for both age groups. These results supported the overlapping waves model of strategy development and provide detailed information about patterns of strategy choice on complex subtraction problems.