Abstract
We initiate a systematic study of the class of theories without the tree property of the second kind — NTP2. Most importantly, we show: the burden is “sub-multiplicative” in arbitrary theories ; NTP2 is equivalent to the generalized Kimʼs lemma and to the boundedness of ist-weight; the dp-rank of a type in an arbitrary theory is witnessed by mutually indiscernible sequences of realizations of the type, after adding some parameters — so the dp-rank of a 1-type in any theory is always witnessed by sequences of singletons; in NTP2 theories, simple types are co-simple, characterized by the co-independence theorem, and forking between the realizations of a simple type and arbitrary elements satisfies full symmetry; a Henselian valued field of characteristic is NTP2 if and only if the residue field is NTP2 , so in particular any ultraproduct of p-adics is NTP2; adding a generic predicate to a geometric NTP2 theory preserves NTP2