Formal systems of fuzzy logic and their fragments

Annals of Pure and Applied Logic 150 (1-3):40-65 (2007)
  Copy   BIBTEX

Abstract

Formal systems of fuzzy logic are well-established logical systems and respected members of the broad family of the so-called substructural logics closely related to the famous logic BCK. The study of fragments of logical systems is an important issue of research in any class of non-classical logics. Here we study the fragments of nine prominent fuzzy logics to all sublanguages containing implication. However, the results achieved in the paper for those nine logics are usually corollaries of theorems with much wider scope of applicability. In particular, we show how many of these fragments are really distinct and we find axiomatic systems for most of them. In fact, we construct strongly separable axiomatic systems for eight of our nine logics. We also fully answer the question for which of the studied fragments the corresponding class of algebras forms a variety. Finally, we solve the problem how to axiomatize predicate versions of logics without the lattice disjunction

Other Versions

No versions found

Links

PhilArchive

    This entry is not archived by us. If you are the author and have permission from the publisher, we recommend that you archive it. Many publishers automatically grant permission to authors to archive pre-prints. By uploading a copy of your work, you will enable us to better index it, making it easier to find.

    Upload a copy of this work     Papers currently archived: 106,168

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2013-12-30

Downloads
39 (#644,152)

6 months
4 (#1,001,261)

Historical graph of downloads
How can I increase my downloads?