Abstract
We introduce a notion of syntactical truth predicate (s.t.p.) for the second order arithmetic PA 2 . An s.t.p. is a set T of closed formulas such that: (i) T(t = u) if and only if the closed first order terms t and u are convertible, i.e., have the same value in the standard interpretation (ii) T(A → B) if and only if (T(A) $\Longrightarrow$ T(B)) (iii) T(∀ x A) if and only if (T(A[x ← t]) for any closed first order term t) (iv) T(∀ X A) if and only if (T(A[X ←▵]) for any closed set definition $\triangle = \{x \mid D(x)\}$ ). S.t.p.'s can be seen as a counterpart to Tarski's notion of (model-theoretical) validity and have main model properties. In particular, their existence is equivalent to the existence of an ω-model of PA 2 , this fact being provable in PA 2 with arithmetical comprehension only