Probing the Vacuum of Particle Physics with Precise Laser Interferometry

Foundations of Physics 45 (1):22-43 (2015)
  Copy   BIBTEX

Abstract

The discovery of the Higgs boson at LHC confirms that what we experience as empty space should actually be thought as a condensate of elementary quanta. This condensate characterizes the physically realized form of relativity and could play the role of preferred reference frame in a modern Lorentzian approach. This observation suggests a new interpretative scheme to understand the unexplained residuals in the old ether-drift experiments where light was still propagating in gaseous systems. Differently from present vacuum experiments, where anyhow deviations from Special Relativity are expected to be at the limit of visibility, these now acquire a crucial importance and become consistent with the Earth’s velocity of 370 km/s which characterizes the CMB anisotropy. In the same scheme, one can also understand the difference with the other experiments where light propagates in strongly bound systems such as solid or liquid transparent media. This non-trivial level of consistency motivates a new generation of precise laser interferometry experiments which explore the same particle physics vacuum and, in this sense, are complementary to those with high-energy accelerators

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 100,809

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Analytics

Added to PP
2014-11-01

Downloads
46 (#479,192)

6 months
4 (#1,246,333)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

Add more references