Abstract
It is sometimes suggested that impure sets are spatially co-located with their members (and hence are located in space). Sets, however, are in important respects like numbers. In particular, sets are connected to concepts in much the same manner as numbers are connected to concepts—in both cases, they are fundamentally abstracts of (or corresponding to) concepts. This parallel between the structure of sets and the structure of numbers suggests that the metaphysics of sets and the metaphysics of numbers should parallel each other in relevant ways. This entails, in turn, that impure sets are not co-located with their members (nor are they located in space)