Computability of fraïssé limits

Journal of Symbolic Logic 76 (1):66 - 93 (2011)
  Copy   BIBTEX

Abstract

Fraïssé studied countable structures S through analysis of the age of S i.e., the set of all finitely generated substructures of S. We investigate the effectiveness of his analysis, considering effectively presented lists of finitely generated structures and asking when such a list is the age of a computable structure. We focus particularly on the Fraïssé limit. We also show that degree spectra of relations on a sufficiently nice Fraïssé limit are always upward closed unless the relation is definable by a quantifier-free formula. We give some sufficient or necessary conditions for a Fraïssé limit to be spectrally universal. As an application, we prove that the computable atomless Boolean algebra is spectrally universal

Other Versions

No versions found

Links

PhilArchive

    This entry is not archived by us. If you are the author and have permission from the publisher, we recommend that you archive it. Many publishers automatically grant permission to authors to archive pre-prints. By uploading a copy of your work, you will enable us to better index it, making it easier to find.

    Upload a copy of this work     Papers currently archived: 107,826

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Analytics

Added to PP
2013-09-30

Downloads
87 (#277,827)

6 months
20 (#223,431)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Valentina Harizanov
George Washington University

Citations of this work

Add more citations