Non-Newtonian Mathematics Instead of Non-Newtonian Physics: Dark Matter and Dark Energy from a Mismatch of Arithmetics

Foundations of Science 26 (1):75-95 (2020)
  Copy   BIBTEX

Abstract

Newtonian physics is based on Newtonian calculus applied to Newtonian dynamics. New paradigms such as ‘modified Newtonian dynamics’ change the dynamics, but do not alter the calculus. However, calculus is dependent on arithmetic, that is the ways we add and multiply numbers. For example, in special relativity we add and subtract velocities by means of addition β1⊕β2=tanh+tanh-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _1\oplus \beta _2=\tanh \big +\tanh ^{-1}\big )$$\end{document}, although multiplication β1⊙β2=tanh·tanh-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _1\odot \beta _2=\tanh \big \cdot \tanh ^{-1}\big )$$\end{document}, and division β1⊘β2=tanh/tanh-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _1\oslash \beta _2=\tanh \big /\tanh ^{-1}\big )$$\end{document} do not seem to appear in the literature. The map fX=tanh-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{\mathbb{X}}=\tanh ^{-1}$$\end{document} defines an isomorphism of the arithmetic in X=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{X}}=$$\end{document} with the standard one in R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}}$$\end{document}. The new arithmetic is projective and non-Diophantine in the sense of Burgin, 1977), while ultrarelativistic velocities are super-large in the sense of Kolmogorov, 1961). Velocity of light plays a role of non-Diophantine infinity. The new arithmetic allows us to define the corresponding derivative and integral, and thus a new calculus which is non-Newtonian in the sense of Grossman and Katz. Treating the above example as a paradigm, we ask what can be said about the set X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{X}}$$\end{document} of ‘real numbers’, and the isomorphism fX:X→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{{\mathbb{X}}}:{\mathbb{X}}\rightarrow {\mathbb{R}}$$\end{document}, if we assume the standard form of Newtonian mechanics and general relativity but demand agreement with astrophysical observations. It turns out that the observable accelerated expansion of the Universe can be reconstructed with zero cosmological constant if fX≈0.8sinh/\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{\mathbb{X}}\approx 0.8\sinh /$$\end{document}. The resulting non-Newtonian model is exactly equivalent to the standard Newtonian one with ΩΛ=0.7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _\Lambda =0.7$$\end{document}, ΩM=0.3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _M=0.3$$\end{document}. Asymptotically flat rotation curves are obtained if ‘zero’, the neutral element 0X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0_{{\mathbb{X}}}$$\end{document} of addition, is nonzero from the point of view of the standard arithmetic of R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}}$$\end{document}. This implies fX-1=0X>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f^{-1}_{{\mathbb{X}}}=0_{{\mathbb{X}}}>0$$\end{document}. The opposition Diophantine versus non-Diophantine, or Newtonian versus non-Newtonian, is an arithmetic analogue of Euclidean versus non-Euclidean in geometry. We do not yet know if the proposed generalization ultimately removes any need of dark matter, but it will certainly change estimates of its parameters. Physics of the dark universe seems to be both geometry and arithmetic.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 100,774

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Isomorphic and strongly connected components.Miloš S. Kurilić - 2015 - Archive for Mathematical Logic 54 (1-2):35-48.
A remark on hereditarily nonparadoxical sets.Péter Komjáth - 2016 - Archive for Mathematical Logic 55 (1-2):165-175.
Minimal elementary end extensions.James H. Schmerl - 2017 - Archive for Mathematical Logic 56 (5-6):541-553.
Two-cardinal diamond and games of uncountable length.Pierre Matet - 2015 - Archive for Mathematical Logic 54 (3-4):395-412.

Analytics

Added to PP
2020-07-28

Downloads
47 (#449,719)

6 months
11 (#305,599)

Historical graph of downloads
How can I increase my downloads?

References found in this work

MOND vs. dark matter in light of historical parallels.Mordehai Milgrom - 2020 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 71:170-195.
Bit-string physics: a finite and discrete approach to natural philosophy.H. Pierre Noyes - 2001 - River Edge, N.J.: World Scientific. Edited by den Berg & C. J..
Towards a Coherent Theory of Physics and Mathematics.Paul Benioff - 2002 - Foundations of Physics 32 (7):989-1029.

Add more references