Abstract
The present paper is thought as a formal study of distributive closure systems which arise in the domain of sentential logics. Special stress is laid on the notion of a C-filter, playing the role analogous to that of a congruence in universal algebra. A sentential logic C is called filter distributive if the lattice of C-filters in every algebra similar to the language of C is distributive. Theorem IV.2 in Section IV gives a method of axiomatization of those filter distributive logics for which the class Matr (C) prime of C-prime matrices (models) is axiomatizable. In Section V, the attention is focused on axiomatic strengthenings of filter distributive logics. The theorems placed there may be regarded, to some extent, as the matrix counterparts of Baker's well-known theorem from universal algebra [9, § 62, Theorem 2].