The Lean Theorem Prover

Abstract

Lean is a new open source theorem prover being developed at Microsoft Research and Carnegie Mellon University, with a small trusted kernel based on dependent type theory. It aims to bridge the gap between interactive and automated theorem proving, by situating automated tools and methods in a framework that supports user interaction and the construction of fully specified axiomatic proofs. Lean is an ongoing and long-term effort, but it already provides many useful components, integrated development environments, and a rich API which can be used to embed it into other systems. It is currently being used to formalize category theory, homotopy type theory, and abstract algebra. We describe the project goals, system architecture, and main features, and we discuss applications and continuing work

Other Versions

No versions found

Links

PhilArchive

    This entry is not archived by us. If you are the author and have permission from the publisher, we recommend that you archive it. Many publishers automatically grant permission to authors to archive pre-prints. By uploading a copy of your work, you will enable us to better index it, making it easier to find.

    Upload a copy of this work     Papers currently archived: 106,168

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

  • Only published works are available at libraries.

Similar books and articles

Automated Theorem Proving and Its Prospects. [REVIEW]Desmond Fearnley-Sander - 1995 - PSYCHE: An Interdisciplinary Journal of Research On Consciousness 2.
Foundations of a theorem prover for functional and mathematical uses.Javier Leach & Susana Nieva - 1993 - Journal of Applied Non-Classical Logics 3 (1):7-38.

Analytics

Added to PP
2016-01-12

Downloads
143 (#165,299)

6 months
8 (#521,746)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Jeremy Avigad
Carnegie Mellon University

Citations of this work

Logic in mathematics and computer science.Richard Zach - forthcoming - In Filippo Ferrari, Elke Brendel, Massimiliano Carrara, Ole Hjortland, Gil Sagi, Gila Sher & Florian Steinberger, Oxford Handbook of Philosophy of Logic. Oxford, UK: Oxford University Press.

Add more citations

References found in this work

No references found.

Add more references