A class of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Sigma {3}^{0}}$$\end{document} modular lattices embeddable as principal filters in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}^{\ast }(V{\infty })}$$\end{document} [Book Review]

Archive for Mathematical Logic 47 (2):111-132 (2008)
  Copy   BIBTEX

Abstract

Let I0 be a a computable basis of the fully effective vector space V∞ over the computable field F. Let I be a quasimaximal subset of I0 that is the intersection of n maximal subsets of the same 1-degree up to *. We prove that the principal filter \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}^{\ast}(V,\uparrow )}$$\end{document} of V = cl(I) is isomorphic to the lattice \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}(n, \overline{F})}$$\end{document} of subspaces of an n-dimensional space over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{F}}$$\end{document}, a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Sigma _{3}^{0}}$$\end{document} extension of F. As a corollary of this and the main result of Dimitrov (Math Log 43:415–424, 2004) we prove that any finite product of the lattices \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(\mathcal{L}(n_{i}, \overline{F }_{i}))_{i=1}^{k}}$$\end{document} is isomorphic to a principal filter of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{ L}^{\ast}(V_{\infty})}$$\end{document}. We thus answer Question 5.3 “What are the principal filters of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}^{\ast}(V_{\infty})?}$$\end{document} ” posed by Downey and Remmel (Computable algebras and closure systems: coding properties, handbook of recursive mathematics, vol 2, pp 977–1039, Stud Log Found Math, vol 139, North-Holland, Amsterdam, 1998) for spaces that are closures of quasimaximal sets.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,139

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Minimal elementary end extensions.James H. Schmerl - 2017 - Archive for Mathematical Logic 56 (5-6):541-553.

Analytics

Added to PP
2013-11-23

Downloads
32 (#708,450)

6 months
9 (#492,507)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Rumen Dimitrov
Sofia University

References found in this work

Theory of Recursive Functions and Effective Computability.Hartley Rogers - 1971 - Journal of Symbolic Logic 36 (1):141-146.
Recursively enumerable vector spaces.G. Metakides - 1977 - Annals of Mathematical Logic 11 (2):147.
Quasimaximality and principal filters isomorphism between.Rumen Dimitrov - 2004 - Archive for Mathematical Logic 43 (3):415-424.

Add more references