Abstract
Let I0 be a a computable basis of the fully effective vector space V∞ over the computable field F. Let I be a quasimaximal subset of I0 that is the intersection of n maximal subsets of the same 1-degree up to *. We prove that the principal filter \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}^{\ast}(V,\uparrow )}$$\end{document} of V = cl(I) is isomorphic to the lattice \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}(n, \overline{F})}$$\end{document} of subspaces of an n-dimensional space over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{F}}$$\end{document}, a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Sigma _{3}^{0}}$$\end{document} extension of F. As a corollary of this and the main result of Dimitrov (Math Log 43:415–424, 2004) we prove that any finite product of the lattices \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(\mathcal{L}(n_{i}, \overline{F }_{i}))_{i=1}^{k}}$$\end{document} is isomorphic to a principal filter of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{ L}^{\ast}(V_{\infty})}$$\end{document}. We thus answer Question 5.3 “What are the principal filters of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}^{\ast}(V_{\infty})?}$$\end{document} ” posed by Downey and Remmel (Computable algebras and closure systems: coding properties, handbook of recursive mathematics, vol 2, pp 977–1039, Stud Log Found Math, vol 139, North-Holland, Amsterdam, 1998) for spaces that are closures of quasimaximal sets.