Multifractal Early Warning Signals about Sudden Changes in the Stock Exchange States

Complexity 2022:1-10 (2022)
  Copy   BIBTEX

Abstract

Critical phenomena in stock exchange are regularly occurring and difficult to predict events, often leading to disastrous consequences. The presented paper is devoted to the search and research of early warning signals of critical transitions in stock exchange based on the results of a multifractal analysis of a series of transactions in shares of public companies. We have proposed and justified the use of certain features of behavior of multifractal spectrum shape parameters such as signals. As model time series, on which methods of multifractal analysis were tested, we used a series of the number of unstable sites of the sandpile automaton on the random Erdős–Rényi graph, self-organizing into critical and bistable states. It was found that the early warning signals for both cellular automata and stock exchanges are an increase in the magnitude of the maximum position, a decrease in the width, and a decrease, followed by a sharp increase, in the value of the spectrum asymmetry parameter.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 100,774

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Analytics

Added to PP
2022-09-23

Downloads
48 (#439,319)

6 months
7 (#652,610)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references