Alternating sign matrices and domino tilings

Abstract

We introduce a family of planar regions, called Aztec diamonds, and study the ways in which these regions can be tiled by dominoes. Our main result is a generating function that not only gives the number of domino tilings of the Aztec diamond of order $n$ but also provides information about the orientation of the dominoes and the accessibility of one tiling from another by means of local modifications. Several proofs of the formula are given. The problem turns out to have connections with the alternating sign matrices of Mills, Robbins, and Rumsey, as well as the square ice model studied by Lieb.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,459

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

  • Only published works are available at libraries.

Analytics

Added to PP
2017-06-17

Downloads
14 (#1,287,610)

6 months
3 (#1,486,845)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references