Abstract
When posing the question "is artificial life possible?", our immediate answer is that on the one hand : of course it is - people make it, and indeed very interesting and even breathtaking structures have already been constructed, such as `aminats', self-reproducing patterns and the other things, we have seen already. In this sense we are forced to take artificial life as a fact (at least as a fact about a new branch of research), nearly in the same way that the philosopher Kant took the theoretical physics of his days, Newtonian physics, as a matter of fact, and then asked: What are the conditions of possibility for this kind of theoretical science? On the other hand: The situation differs from Kant's. Artificial Life does not confront us with an analogy of theoretical mechanics within the field of biology. We face a curious situation: It is not obvious to the majority of biologists that Artificial Life is possible at all, at least in the purely computational sense of `software life'. Probably, most biologists would never call these artificial constructs `living'. Why not? Because the intuitive notions of life and living systems within biology implies, among other things, that living beings are a result of a long, ongoing evolutionary process that have created autonomous organisms, single-celled and multi-celled, that are highly organized, open (non-equilibrium), material thermodynamic systems based on metabolism and some kind of genetic information supported by macromolecules, that only metaphorically resemble a computer program. It is not that..