Abstract
Dissertatio proposita circa “argumentum ontologicum” pro existentia Dei, quem K. Goedel construxit, versatur. In prima parte structuram logicam dicti argumenti exponimus, singulos gradus argumenti explicamus, “collapsumque modalitatum”, quo argumentum invalidari invenitur, examinamus. Sequenti parte recentiores quasdam confectiones argumenti pertractamus; et scil. praecipue formam eius, quae super conceptum mathematicum multitudinis seu “complexus elementorum terminatorum” fundatur, et formam “algebraicam”, quarum affinitates quasdam notabiles prae oculos ponimus. Ultima parte disceptationes, quae circa huiusce argumenti validitatem ac momentum respectu modernae theisticae philosophiae agebantur, describimus. Loco conclusionis observamus, Goedelii argumentum exemplum esse notabile “fidei quaerentis intellectum”.The article deals with Gödel’s ontological proof of God’s existence. It consists of three parts. In the first part we present the logical structure of the argument, analyse its individual steps and discuss the implied collapse of modalities, which is fatal for the proof. In the second part we focus on some more recent versions of the argument, especially the set-theoretical version and the algebraic version, and we show several interesting connexions between the algebraic and the set-theoretical version. In the final part of the paper we briefly recount the discussions concerning the validity of the argument and its importance for modern theistic philosophy. We conclude by observing that Gödel’s argument is an interesting modern instance of “faith seeking understanding”.