Abstract
Francez has suggested that connexivity can be predicated of connectives other than the conditional, in particular conjunction and disjunction. Since connexivity is not any connection between antecedents and consequents—there might be other connections among them, such as relevance—, my question here is whether Francez’s conjunction and disjunction can properly be called ‘connexive’. I analyze three ways in which those connectives may somehow inherit connexivity from the conditional by standing in certain relations to it. I will show that Francez’s connectives fail all these three ways, and that even other connectives obtained by following more closely Wansing’s method to get a connexive conditional, fail to be connexive as well.