Abstract
Let L be a sentential (object) language containing atoms ‘A’, ‘B’, . . . , and two logical connectives ‘&’ and ‘→’. In addition to these two logical connectives, L will also contain another binary connective ‘ ’, which is intended to be interpreted as the English indicative. In the meta-language for L , we will have two meta-linguistic operations: ‘ ’ and ‘ ’. ‘ ’ is a binary relation between individual sentences in L . It will be interpreted as “single premise entailment” (or “single premise deducibility in L ”). ‘ ’ is a monadic predicate on sentences of L . It will be interpreted as “logical truth of the logic of L ” (or “theorem of the logic of L ”). We will not presuppose anything about the relationship between ‘ ’ and ‘ ’. Rather, we will state explicitly all assumptions about these meta-theoretic relations that will be required for Gibbard’s Theorem.