Abstract
Since both berkeley and hume are committed to the view that a line is composed of finitely many fundamental parts, They must find responses to the standard geometrical proofs of infinite divisibility. They both repeat traditional arguments intended to show that infinite divisibility leads to absurdities, E.G., That all lines would be infinite in length, That all lines would have the same length, Etc. In each case, Their arguments rest upon a misunderstanding of the concept of a limit, And thus are not successful. Berkeley, However, Adds a further ingenious argument to the effect that the standard geometrical proofs of infinite divisibility misread the unlimited representational capacity of geometrical diagrams as a substantive feature of the objects that these diagrams represent. The article concludes that berkeley is right on this matter, And that the traditional proofs of infinite divisibility do not show what they are intended to show