Une fonction de Kolchin pour les corps imparfaits de degré d'imperfection fini

Journal of Symbolic Logic 70 (2):664 - 680 (2005)
  Copy   BIBTEX

Abstract

Non-perfect separably closed fields are stable, and not superstable. As a result, not all types can be ranked. We develop here a new tool, a "semi-rank", which takes values in the non-negative reals, and gives a sufficient condition for forking of types. This semi-rank is built up from a transcendence function, analogous to the one considered by Kolchin in the context of differentially closed fields. It yields some orthogonality and stratification results. /// Un corps séparablement clos non algébriquement clos est stable sans être superstable. Cela signifie que seuls certains de ses types sont rangés. Nous développons un autre outil, un "semi-rang" à valeurs réelles, qui donne un critère de déviation des types. Ce semi-rang est construit à partir d'un analogue de la fonction de Kolchin associée à un type au-dessus d'un corps différentiel. Il produit des résultats de stratification des modèles et des résultats d'orthogonalité

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,423

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2010-08-24

Downloads
40 (#567,117)

6 months
10 (#427,773)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

Stability in Model Theory.Daniel Lascar & J. E. Wallington - 1990 - Journal of Symbolic Logic 55 (2):881-883.
Subgroups of the additive group of a separably closed field.Thomas Blossier - 2005 - Annals of Pure and Applied Logic 134 (2-3):169-216.

Add more references