A structural dichotomy in the enumeration degrees

Journal of Symbolic Logic:1-18 (2020)
  Copy   BIBTEX

Abstract

We give several new characterizations of the continuous enumeration degrees. The main one proves that an enumeration degree is continuous if and only if it is not half a nontrivial relativized K-pair. This leads to a structural dichotomy in the enumeration degrees.

Other Versions

reprint Ganchev, Hristo A.; Kalimullin, Iskander Sh; Miller, Joseph S.; Soskova, Mariya I. (2022) "A structural dichotomy in the enumeration degrees". Journal of Symbolic Logic 87(2):527-544

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,270

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Analytics

Added to PP
2020-07-11

Downloads
16 (#1,197,550)

6 months
5 (#1,056,575)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Citations of this work

Add more citations

References found in this work

Reducibility and Completeness for Sets of Integers.Richard M. Friedberg & Hartley Rogers - 1959 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 5 (7-13):117-125.
Reducibility and Completeness for Sets of Integers.Richard M. Friedberg & Hartley Rogers - 1959 - Mathematical Logic Quarterly 5 (7‐13):117-125.
Definability of the jump operator in the enumeration degrees.I. Sh Kalimullin - 2003 - Journal of Mathematical Logic 3 (02):257-267.
Arithmetical Reducibilities I.Alan L. Selman - 1971 - Mathematical Logic Quarterly 17 (1):335-350.
Density of the cototal enumeration degrees.Joseph S. Miller & Mariya I. Soskova - 2018 - Annals of Pure and Applied Logic 169 (5):450-462.

View all 6 references / Add more references