AI-Driven Water Management Systems for Sustainable Smart cities

Abstract

The growing volume of urban waste poses significant environmental and economic challenges for cities worldwide. Traditional waste management systems often rely on inefficient collection routes, inadequate recycling processes, and excessive landfill usage. This paper explores how Artificial Intelligence (AI) and IoT technologies can revolutionize waste management in smart cities by enabling real-time monitoring, automated sorting, and optimized collection routes. By integrating data from smart bins, robotic sorting systems, and predictive analytics, cities can achieve zero-waste goals and promote circular economy practices. Experimental results demonstrate significant improvements in waste segregation accuracy, collection efficiency, and recycling rates, offering a sustainable blueprint for urban waste management.

Other Versions

No versions found

Links

PhilArchive

External links

  • This entry has no external links. Add one.
Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

  • Only published works are available at libraries.

Analytics

Added to PP
2025-02-02

Downloads
43 (#523,849)

6 months
43 (#106,411)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Eric Garcia
Illinois Institute of Technology

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references