Abstract
We introduce the notion of n-nuanced MV-algebra by performing a Łukasiewicz–Moisil nuancing construction on top of MV-algebras. These structures extend both MV-algebras and Łukasiewicz–Moisil algebras, thus unifying two important types of structures in the algebra of logic. On a logical level, n-nuanced MV-algebras amalgamate two distinct approaches to many valuedness: that of the infinitely valued Łukasiewicz logic, more related in spirit to the fuzzy approach, and that of Moisil n-nuanced logic, which is more concerned with nuances of truth rather than truth degree. We study n-nuanced MV-algebras mainly from the algebraic and categorical points of view, and also consider some basic model-theoretic aspects. The relationship with a suitable notion of n-nuanced ordered group via an extension of the Γ construction is also analyzed