Abstract
We consider the problem of uniqueness of certain simultaneity structures in flat spacetime. Absolute simultaneity is specifiled to be a non-trivial equivalence relation which is invariant under the automorphism group Aut of spacetime. Aut is taken to be the identity-component of either the inhomogeneous Galilei group or the inhomogeneous Lorentz group. Uniqueness of standard simultaneity in the first, and absence of any absolute simultaneity in the second case are demonstrated and related to certain group theoretic properties. Relative simultaneity with respect to an additional structure X on spacetime is specified to be a non-trivial equivalence relation which is invariant under the subgroup in Aut that stabilises X. Uniqueness of standard Einstein simultaneity is proven in the Lorentzian case when X is an inertial frame. We end by discussing the relation to previous work of others.