Abstract
In this third paper in a series on stochastic electrodynamics (SED), the nonrelativistic dipole approximation harmonic oscillator-zero-point field system is subjected to an arbitrary classical electromagnetic radiation field. The ensemble-averaged phase-space distribution and the two independent ensemble-averaged Liouville or Fokker-Planck equations that it satisfies are derived in closed form without furtner approximation. One of these Liouville equations is shown to be exactly equivalent to the usual Schrödinger equation supplemented by small radiative corrections and an explicit radiation reaction (RR) vector potential that is similar to the Crisp-Jaynes semiclassical theory (SCT) RR potential. The wave function in this SED Schrödinger equation is shown to have thea priori significance of position probability amplitude. The other Liouville equation has no counterpart in ordinary quantum mechanics, and is shown to restrict initial conditions such that (i) The Wigner-type phase-space distribution is always positive, (ii) in the absence of an applied field, the only allowed solution of both equations is the quantum ground state, and (iii) if a previously applied field is suddenly turned off, then spontaneous transitions occur, with no need for a triggering perturbation as in SCT, until the system is in the ground state. It is also shown that the oscillator energy is a fluctuating quantity that must take on a continuum of values, with average value equal to the quantum ground-state energy plus a contribution due to the applied classical field