Modal Logics of Some Hereditarily Irresolvable Spaces

In Ivo Düntsch & Edwin Mares (eds.), Alasdair Urquhart on Nonclassical and Algebraic Logic and Complexity of Proofs. Springer Verlag. pp. 303-322 (2021)
  Copy   BIBTEX

Abstract

A topological space is hereditarilyk-irresolvable if none of its subspaces can be partitioned into k dense subsets. We use this notion to provide a topological semantics for a sequence of modal logics whose n-th member K4Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}_n$$\end{document} is characterised by validity in transitive Kripke frames of circumference at most n. We show that under the interpretation of the modality ◊\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Diamond $$\end{document} as the derived set operation, K4Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}_n$$\end{document} is characterised by validity in all spaces that are hereditarily n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n+1$$\end{document}-irresolvable and have the TD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_D$$\end{document} separation property. We also identify the extensions of K4Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}_n$$\end{document} that result when the class of spaces involved is restricted to those that are crowded, or densely discrete, or openly irresolvable, the latter meaning that every non-empty open subspace is 2-irresolvable. Finally, we give a topological semantics for K4M, where M is the McKinsey axiom.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,553

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Isomorphic and strongly connected components.Miloš S. Kurilić - 2015 - Archive for Mathematical Logic 54 (1-2):35-48.
Minimal elementary end extensions.James H. Schmerl - 2017 - Archive for Mathematical Logic 56 (5-6):541-553.
A remark on hereditarily nonparadoxical sets.Péter Komjáth - 2016 - Archive for Mathematical Logic 55 (1-2):165-175.

Analytics

Added to PP
2022-03-09

Downloads
15 (#1,249,340)

6 months
7 (#761,022)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references