Abstract
Organic chemists have been able to develop a robust, theoretical understanding of the phenomena they study; however, the primary theoretical devices employed in this field are not mathematical equations or laws, as is the case in most other physical sciences. Instead it is diagrams, and in particular structural formulas and potential energy diagrams, that carry the explanatory weight in the discipline. To understand how this is so, it is necessary to investigate both the nature of the diagrams employed in organic chemistry and how these diagrams are used in the explanations of the discipline. I will begin this paper by characterizing some of the major ways that structural formulas used in organic chemistry. Next I will present a model of the explanations in organic chemistry and describe how both structural formulas and potential energy diagrams contribute to these explanations. This will be followed by several examples that support my abstract account of the role of diagrams in the explanations of organic chemistry. In particular, I will consider both the appeal to ‘hyperconjugation’ in the explanation of alkene stability and how the idea of ‘ring strain’ was developed to explain the relative stability of cyclic compounds.