Abstract
The relation of the special and the general principle of relativity to the principle of covariance, the principle of equivalence and Mach's principle, is discussed. In particular, the connection between Lorentz covariance and the special principle of relativity is illustrated by giving Lorentz covariant formulations of laws that violate the special principle of relativity: Ohm's law and what we call “Aristotle's first and second laws.” An “Aristotelian” universe in which all motion is relative to “absolute space” is considered. The first law: a free particle is at rest. The second law: force is proportional to velocity. Ohm's law: the current density is proportional to the electrical field strength. Neither of these laws fulfills the principle of relativity. The examples illustrate, in the context of Lorentz covariance and special relativity, Kretschmann's critique of founding Einstein's general principle of relativity on the principle of general covariance. A modification of the principle of covariance is suggested, which may serve as a restricted criterium for a physical law to satisfy Einstein's general principle of relativity. Other objections that have been raised to the validity of Einstein's general principle of relativity are based upon the preferred state of inertial frames in the general, as well as in the special theory, the existence of tidal effects in “true” gravitational fields, doubts as to the validity of Mach's principle, whether electromagnetic phenomena obey the principle, and, finally, the anisotropy of the cosmic background radiation. These objections are reviewed and discussed